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An LDA-Based Approach for Real-Time
Simultaneous Classification of Movements

Using Surface Electromyography
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Abstract— Myoelectric-based decoding strategies offer
significant advantages in the areas of human-machine inter-
actions because they are intuitive and require less cog-
nitive effort from the users. However, a general drawback
in using machine learning techniques for classification is
that the decoder is limited to predicting only one move-
ment at any instant and hence restricted to performing
the motion in a sequential manner, whereas human motor
control strategy involves simultaneous actuation of multi-
ple degrees of freedom (DOFs) and is considered to be a
natural and efficient way of performing tasks. Simultaneous
decoding in the context of myoelectric-based movement
control is a challenge that is being addressed recently
and is increasingly popular. In this paper, we propose a
novel classification strategy capable of decoding both the
individual and combined movements, by collecting data
from only the individual motions. Additionally, we exploit
low-dimensional representation of the myoelectric signals
using a supervised decomposition algorithm called linear
discriminant analysis, to simplify the complexity of control
and reduce computational cost. The performance of the
decoding algorithm is tested in an online context for the
two DOFs task comprising the hand and wrist movements.
Results indicate an overall classificationaccuracy of 88.02%
for both the individual and combined motions.

Index Terms— Electromyography, simultaneous motion
decoding, real-time myoelectric control, linear discriminant
analysis.

I. INTRODUCTION

MYOELECTRICALLY controlled prosthesis and
exoskeletons devices aim at closely replicating

the natural and efficient motor control strategies of the
human [1]–[3]. The intention decoding becomes challenging
in joints with multiple DOFs (especially distal joints
such as wrist and hand which are capable of highly
dexterous manipulation), where a single muscle could be
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responsible for more than one movement [4]. Therefore,
decoding user intention can be challenging due to the
complex relationship between the muscle activity and the
corresponding motions [5]. Furthermore, using surface
electromyographic (sEMG) techniques makes it harder to
access the activity of the deeper muscle fibers, avoid cross-talk
in the signals, and are very sensitive to sweat, fatigue and
slight shift in electrode positions [6]. For this reason, pattern
recognition techniques using machine learning algorithms
have primarily been used in decoding myoelectric signals
corresponding to various movements or gestures, and are
capable of providing reliable classification accuracies [7], [8].
These strategies proposed a decoder which can only predict
one movement or gesture at a time, lacking the capability
to simultaneously classify multiple movements when the
user voluntarily performs a combined motion. To overcome
this limitation, muscle activities of both the individual and
combined movements are also recorded during the calibration
phase in order to enhance the capability of the decoder to
perform simultaneous classification [9]. Young et al. [10]
proposed a modified version for simultaneous classification,
to enhance the reliability of decoding, but their approach in
general is limited by the need for an extensive calibration
process which is time consuming.

Various linear and non-linear regression-based algorithms
have been proposed for performing simultaneous and propor-
tional decoding of multiple DOFs using surface electromyog-
raphy [11]–[19]. Most of these techniques require a calibration
phase where the muscle activities of only the individual
movements are recorded; a regression-based algorithm is used
to build the relationship between the muscle activity and the
desired output (position or force) for each DOF separately
and are then combined in order to predict both individual and
combined movements. The decoding strategy proposed by
Jiang et al. [16] is a widely used method for performing pro-
portional and simultaneous decoding, and involves using non-
negative matrix factorization (NMF) to reduce the dimension-
ality and build the control scheme for each individual DOF.

Alternatively, an approach called linear enhanced training
has been proposed by Nowak et al. [20], where the authors
built a relationship for the combined movements as a function
of the muscle activity of the respective individual movements.
The approach required to record the sEMG signals of both
individual and combined movements from a small subset of
subjects initially, in order to build the relationship.
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In this paper, we propose a novel classification algorithm
capable of predicting both individual and combined move-
ments by recording, during the calibration phase, the surface
EMG of only the individual motions. The decoding strategy
is designed based on the hypothesis that the features of the
combined movement data can be obtained by a combination
of the data from the respective individual movement [21]. The
objective of this study is to test the decoding paradigm in a task
involving two DOFs of the wrist and hand movements, and
evaluate its performance for real-time classification. Another
aspect we are interested in exploring, is the use of dimension-
ality reduction techniques for simplifying control complexity
and lowering the computational costs. This could be very
beneficial while using an embedded system to enable porta-
bility of the processing unit in applications such as prosthesis
and exoskeletons. In this case, we are interested in applying
the linear discriminant analysis (LDA) method to project the
EMG data to a low-dimensional space, mainly because of
the supervised nature of the algorithm, by assigning labels
to each movement-class to ensure better discrimination [22].
The alternative approaches for data compression, i.e. NMF
and PCA aim at maximizing the variance among the data
irrespective of the various movement-classes.

II. METHODS

A. Decoding Model Algorithm

On a low-dimensional representation of the muscular activ-
ity, we speculate that the feature vectors of the combined
movement lie in the geometrical space enclosed between
those of the respective individual movements. The choice of
the order of the reduced dimension using LDA is a critical
factor in determining the complexity of the algorithm. In case
of a two DOF motion-task (two individual movements per
DOF), the simplest and least complicated choice, in terms
of complexity of algorithm and computational power is a
two-dimensional space.

Our proposed strategy involves projecting the original data
into a two-dimensional space, where each data point is char-
acterized by a magnitude and an orientation, like in a polar
coordinate system. The orientation space for each individual
movement-class is defined by an angular boundary (circular
sector) which is determined based on the mean and standard
deviation of the orientation of the data in each class. More
specifically, if the data lies within the two boundaries then it
is classified as belonging to that respective movement-class.
Whereas, if the data lies outside the boundaries it is classified
as a combined movement corresponding to the combination
of the individual classes adjacent to it on either side. An ideal
representation of the proposed decoding strategy is shown in
Figure 1. The shaded area in grey represents the data space
of the various individual movements of the two DOFs. The
area enclosed between the individual classes are the respective
combined movements.

However, the validity of this decoding model is dependent
on two important criteria:

1) Orientation constraint: Data of one agonist/antagonistic
DOF pair lies in between the data of the other pair

Fig. 1. Decoding model: The two DOF movements (both directions) are
enclosed in the shaded region, and the respective combined movements
are enclosed in the space between the individual movements.

in the orientation space. The decoder loses the ability
to predict combined movements in the event when the
agonist/antagonistic DOF pair are adjacent to each other.

2) Linear combination: The combined movement data lies
in the orientation space enclosed by the respective
individual movement-classes. This criterion is built on
the validity of the first one, which means a violation of
the former affects the validity of the latter but not vice
versa.

The most important aspect to consider is that the LDA
algorithm doesn’t impose the orientation constraint criterion,
which is crucial for the validation of the proposed decoding
strategy. Hence, one solution that we propose is to initially
project the original data to a three-dimensional space instead
of two-dimensional space using LDA. It is worth noting that
the two-dimensional projection of the data using LDA, is the
same as projecting the three-dimensional LDA transformed
data on the x-y plane. Therefore, instead of performing the
default projection (on the x-y plane), we propose to identify an
alternate projection of the three-dimensional data which would
ensure the validity of the orientation constraint criterion.

The original data consisting of individual movements is
represented as XεR

m×4Ns , where m denotes the number of
EMG channels, Ns is the total number of samples in each
movement-class, and 4 being the number of individual classes.
LDA projects the matrix X into a new matrix X given by the
relation

X = AX (1)

where AεR
3×m is the transformation matrix which projects the

data X from an m-dimensional space to a three-dimensional
space, and XεR

3×4Ns .
The next step is to identify an optimum rotation matrix

which will ensure that the two-dimensional projection will
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Fig. 2. Target configurations that the virtual avatar is designed to
configure into, depending on the decoder output.

meet the orientation constraint criterion. The XYX Euler
angles convention is used to obtain the rotation matrix (rotation
about x axis followed by rotation about y axis, and finally
rotation about x axis). The rotation matrix is given by

˜Xijk =
(

R3k
x × R2 j

y × R1i
x

)

× X i, j, kε[0, 5, 10 . . . 180]
(2)

where R1i
x is the rotation about x axis by i degrees, R2 j

y is
the rotation about y axis by j degrees, R3k

x is the rotation
about x axis by k degrees, and ˜XijkεR

3×4Ns .
A cost value is defined to evaluate and identify the optimal

rotation matrix which will ensure the least overlap between the
data of the various movement-classes, and an even distribution
of data in the orientation space of the two-dimensional polar
plot. The V ar i jk

between measure is used to identify the projection
which will ensure maximum separation between the data clus-
ters of each movement-class. On the other hand, the V ar i jk

within
measure is used to identify the best projection with mini-
mum deviation of data within each movement-class in the
orientation space. The cost value for the two-dimensional
projection of ˜Xijk which is ̂XijkεR

2×4Ns is evaluated only
if the orientation constraint criterion is satisfied. The variance
measures are calculated as shown in the equations below,

V ar i jk
between =

M
∑

p=1
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(

σ p− − σ p+)

(
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σ p− =

√
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V ar i jk
within =
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∑

p=1

√

√

√

√

√

1

Ns
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∑

q=1

(

μp − θ
p
q
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(4)

where, M = 4 denotes the number of individual movement-
classes, p+ and p− represents the adjacent classes, on either
side of the individual movement-class p, and μ and σ repre-
sent the mean and standard deviation of the orientation θ of
the data points in each class p. Each of the variance measures
is normalized using the z-score so as to have a common
scale for computing the cost value, and the configuration
R3k

x × R2 j
y × R1i

x with the minimum cost value is selected as
the optimal rotation matrix.

Once the optimal rotation matrix is determined, the two-
dimensional projection of the data (LDA projection followed
by optimal rotation) will ensure the validity of the ori-
entation constraint criterion in the best possible way. The
separation boundaries are fixed to twenty degrees on either
side of the mean orientation of the data in each individual
movement-class to have an almost even distribution of sectors
for both the individual (40 degrees) and combined (50 degrees)
movement-classes in the orientation space. However, the valid-
ity of the linear combination criterion can only be evaluated
during the actual testing phase for real-time control.

B. Subjects
A total of twelve healthy subjects (eight males and four

females, mean age ±SD = 27.67 ± 1.43 years) participated in
the experiment. They all provided written informed consents
prior to the commencement of the experiment. The procedures
were approved by the Institutional Review Board at Nanyang
Technological University.

C. Experimental Setup
The muscle activities of the subjects were recorded using a

wireless EMG system (Trigno wireless, Delsys Inc.), and were
acquired using a real-time data acquisition board (Quanser
QPIDe), controlled in Simulink (Mathworks). The acquisition
frequency was set at 1 kHz, and the output of the decoder
during real-time control was averaged using a 10-sample
moving window. A total of six electrodes were evenly placed
around the thickest part of the forearm where most of the
wrist and hand muscles are concentrated. A virtual avatar
consisting of the wrist and hand articulations was displayed
on a screen to provide visual feedback to the user in real-time,
and the different configurations for the various individual and
combined motions of the avatar are as shown in Figure 2. The
myoelectric signals are pre-processed before the analysis in
order to remove noise and baseline shifts. The signals are first
full-wave rectified and passed to a low-pass filter (second order
Butterworth filter with a cut-off frequency of 8 Hz) to obtain
a linear envelope of the signal. The signal offset is removed
by subtracting the mean value of each EMG channel during
the rest phase.

D. Experimental Protocol

The experiments were split into two phases:
1) Calibration Phase: During this phase, a GUI instructs

the subjects to perform each of the individual movements,
as shown in Figure 3. Each motion is performed four times,
with three seconds of motion followed by two seconds of rest,
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Fig. 3. Decoding model testing phase A) Calibration phase: Each user is instructed to perform a movement � times (alternating between three seconds
of movement and two seconds of rest). A timer is shown on the screen to provide feedback. B) Online testing phase: The task to be performed is
presented on the screen, and the movement performed by the user is decoded in real-time to control the motion of the virtual avatar. Visual feedback
of the decoding is constantly provided, and auditory cues are provided upon successful task completion.

and the data acquired during this phase is used to build the
subject-specific decoding model.

2) Online Testing Phase: The performance of the decoder
is tested for real-time control in this phase. The output of
the decoder is translated on the screen as a movement of the
avatar, as depicted in Figure 3. The avatar is initially in a
neutral position when the subject starts the experiment. The
aim of the subject is to transition the avatar from the neutral
pose to the target configuration of the requested movement,
which is displayed on the top-left corner of the screen. The
task is considered successful, only upon reaching the target
position for the requested movement and holding the pose for
0.2 seconds. A minimum jerk trajectory [23] is used to control
the position of the avatar; the trajectory planning algorithm
produces smooth motion profiles from one configuration to
another, similar to the strategy used by humans in moving the
limbs, thereby ensuring a natural motion of the avatar as much
as possible. The user is required to constantly produce the
target motion-class in order to reach the target configuration,
while the avatar returns to the neutral configuration when the
user does not activate his/her muscles. It should be noted that
it is not possible to start with one individual motion followed
by switching to perform the other respective motion-class to
complete the combined movement task. Though, it is possible
to initiate the combined movement with an individual motion,
the subjects still need to simultaneously produce both the
requested movements at some point to reach the target and
complete the task, and is generally referred to as sequential
decoding. The online decoding experiments were split in two
blocks to prevent muscle fatigue to the users, where each block
consists of ten repetitions of each of the eight movements,
performed in a pseudo-random order. The task is considered
incomplete if the desired movement of the avatar is not
performed within twenty seconds, after which a new task
begins.

E. Intrinsic Dimensionality Estimation

One matter of concern in decoding simultaneous motions
is the inadvertent activation of a combined movement when

the subject only intends to perform an individual movement,
leading to higher risk of task failure [24]. Therefore, it is very
important to first determine whether the user is intending to
perform an individual movement or a combined movement
to improve the robustness and reliability of the decoder.
Once it is determined, the decoding strategy can be stream-
lined to classify either individual or combined movements.
This strategy has already been introduced in the work by
Amsuess et al. [24], and is referred to as intrinsic dimension-
ality estimation (IDE).

In this work, we utilize the Mahalanobis distance (MD)
measure on the LDA transformed data in order to determine
whether the data belongs to an individual movement or a
combined movement. The MD measure has shown to be
computationally efficient and perform better compared to
other IDE algorithms [24]. In this case, the MD algorithm
is performed on the three-dimensional LDA transformed data
consisting of only the individual movements obtained during
the calibration phase. The MD algorithm generates a distance
measure for a feature vector data with respect to a group
of feature vector data (data belonging to a movement class).
In general, the MD measure is calculated as shown below:

dM D = (x − μ)T �−1(x − μ) (5)

where x represents the feature vector, μ and � are the mean
and the covariance matrix of the data belonging to the group.
The mean and standard deviation of the MD measure for
each of the feature vector data in a particular movement class
with respect to the entire data in the same movement class is
calculated as shown below in order to identify the threshold
for discrimination.

μi
M D =

Ns
∑

j=1

(xi
j − μi )T �−1

i (xi
j − μi )

σ i
M D =

Ns
∑

j=1

(x j − μi
M D)2 (6)

where μi
M D and σ i

M D are the mean and standard deviation
values for each movement class, xi

j is the j th feature vector
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Fig. 4. Metrics used for performance evaluation, explained using an
example of wrist flexion and hand open motion.

data in the i th movement class, and μi and �i are the mean
and covariance matrix of the feature vector data in the i th

movement class. During the online testing phase, the MD mea-
sure is evaluated on the three-dimensional LDA transformed
feature vector with respect to each of the individual movement
feature data cluster (recorded during the calibration phase)
to determine if the measure lies within the threshold for the
respective movement class. The threshold is set to the mean
value plus two standard deviations for each movement class.

F. Performance Metrics

We use four measures (three of them are derived from
Li et al. [25]) to quantify the performance of the decoding
model for online classification are as follows.

1) Motion selection time: It is the time taken by the decoder
to accurately predict the desired motion-class, i.e. the
time from when the subject transitions from the rest state
(movement onset) to the first instant the decoder predicts
the requested movement-class. The user is requested to
relax to ensure that the decoder is outputting the rest
state before they start performing the task. In the case
of combined movements, it is calculated as the time from
the onset of the first detection of movement to when the
decoder accurately predicts the simultaneous movement.

2) Motion completion time: It is the time taken to com-
plete the requested task, and is calculated from move-
ment onset(as shown in Figure 4) to when the virtual
avatar reaches the target configuration for the requested
motion-class. Successful completion of the task is guar-
anteed only upon reaching the desired configuration pose
and maintaining the configuration for 0.2 seconds.

3) Online classification accuracy: The accuracy in decod-
ing for each successfully completed movement task is
represented by this metric. In the case of combined
movements, the accuracy is calculated by including the
accuracy of simultaneously predicting the movement,
and the accuracy of predicting the respective individual
movements. This is done so as to accommodate both

sequential and simultaneous decoding in the case of
combined movements. The accuracy is evaluated as the
ratio of the number of correctly classified samples to the
total number of samples in a particular motion trial.

Accuracy = 1

Nt

Nt
∑

i=1

ui

ui + vi
(7)

where Nt represents the number of successfully com-
pleted trials in a particular motion-class for a subject. ui

and vi represents the number of correctly and incorrectly
classified samples respectively in a particular trial i .
Figure 4 represents the above three performance metric
using an example of wrist extension motion-class.

4) Efficiency coefficient: This is defined as the ratio
between the shortest (optimal) time required to complete
the task and the actual time taken to complete the
task, and expressed as a percentage. This metric is
similar to the one used in [16], where instead they
are calculated in terms of the optimal distance from the
initial to the target. It is especially useful in the case of a
combined movement task, to understand the efficiency of
the user in simultaneously producing both the respective
individual motions.

Statistical analysis using a student t-test at the 5% signifi-
cance level is performed in order to evaluate the difference in
the performance measures between individual and combined
movement classes.

III. RESULTS

The data obtained during the calibration phase for a rep-
resentative subject is shown in Figure 5. The LDA transfor-
mation in the three-dimensional space is shown in plot A.
Plot B indicates the pure two-dimensional LDA projection
(projection of the three-dimensional data obtained after LDA
transform on the x-y plane without performing optimal rota-
tion), whereas plot C indicates the representation involving
both LDA projection and optimal rotation. Both these pro-
jections (plot A and B) facilitates in the discrimination of
the individual motions, but only the latter projection (plot B)
can ensure the validity of the orientation constraint criteria.
Therefore, the LDA plus optimal rotation transform helps in
ensuring the validity of the orientation constraint criterion in
the best possible way.

Figure 6 shows the EMG data projected on a two-
dimensional space of a representative subject, during the
online testing phase. The plot on the left indicates the data
from the twenty trials for each of the individual movement-
classes, whereas the plot on the right are those belonging
to the combined movement-classes. It can be noticed that
the data from the combined classes do indeed lie in the
orientation space between the respective individual class data,
thereby validating the linear combination criterion. Therefore,
the LDA projection followed by the optimal rotation ensures
the validity of both the orientation constraint and linear
combination criteria, thereby enabling the working of our
proposed decoding strategy.
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Fig. 5. A) The plot represents the three-dimensional LDA transformed EMG data of the � individual movements. B) The two-dimensional projection is
represented in this plot, and it fails to meet the orientation constraint criteria, thereby invalidating the proposed decoding model. C) The transformed
data after the optimal rotation and followed by two-dimensional projection is represented in this plot. It can be noticed that validity of the orientation
constraint criteria is ensured, and the dotted lines indicate the boundaries for discriminating the various movements.

Fig. 6. The two-dimensional projection of the EMG data of a representative subject during the online testing phase is indicated. The plot on the
left represents the data for the twenty trials for each of the individual movements, while the plot on the right correspond to the data of the combined
movement trials.

The comparison of the accuracy with and without IDE is
shown for each subject in Figure 7, where the individual
motion data obtained during the online testing phase is used to
evaluate the efficacy. The rate of misclassification of an indi-
vidual movement as combined movement is shown to decrease
for most of the subjects, and in such cases the prediction
accuracy for individual motions have respectively improved.
A one-way repeated anova test was performed to evaluate the
significance in the differences between the misclassification

rate. We observed a high significant difference (p = 0.002)
with an F-ratio of 15.815.

A. Motion Selection Time

The average time taken to correctly select the desired
motion class, across all subjects and motion classes is
0.52 ± 1.07 seconds. The mean selection time is higher
in the case of simultaneous motions (0.78 ± 1.20) when
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Fig. 7. Bar plots indicating the accuracy of decoding of the individual movements, and the misclassification rate for all the subjects. A comparison
of the accuracies with and without the IDE technique is shown to highlight its importance.

Fig. 8. Polar plot for the various performance metrics. Black lines and the dotted lines indicate the mean and standard error respectively in each
motion-class across all subjects.

compared to individual motions (0.28 ± 0.87). A significant
difference between individual and combined data-sets was
found.

B. Motion Completion Time
The average time taken to complete each task across all the

subjects and motion class is 2.53 ± 2.41 seconds. A statistical
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Fig. 9. Plot shows the confusion matrix of the classification accuracy
concerning all the motion tasks.

significance is observed in the average values between indi-
vidual (2.04±2.02) and combined motions (3.06±2.66), with
the average time higher in the case of combined movements.

C. Online Classification Accuracy

The average classification performance of the decoder for
all the subjects and across all the motion classes is 87.86 ±
19.79%. There is also a statistical difference in the classifica-
tion accuracy between individual (82.1 ± 23.56%) and com-
bined motions (93.94 ± 12.15%), with combined movements
having higher classification accuracy.

D. Efficiency Coefficient

The average efficiency coefficient of the decoder for all the
subjects and across all the motion classes is 65.54 ± 32.31%.
There is also a statistical difference in the efficiency values
between individual (74.0 ± 31.2%) and combined motions
(56.64 ± 31.06), with combined movements having lower
values in general.

Figure 8 represents the polar plot indicating the mean and
standard error in the case of each of the movement classes
across all subjects, for each of the performance measures.

The confusion matrix shown in Figure 9 reports the inac-
curacy of the decoding model in predicting the user intention.
We can notice that the accuracy of decoding the combined
movements simultaneously, is low compared to that of the indi-
vidual movements. This only means that an intended combined
motion was performed sequentially, meaning that user starts
with one individual motion-class followed by simultaneously
performing the other respective class at some point in time to
successfully complete the task. According to previous studies,
unintended simultaneous motions were more detrimental to the
control than unintended sequential motions [24]. The reason
for a sequential approach could either be because of the
higher threshold set in the MD algorithm to differentiate
between individual and combined movements, or because the

TABLE I
LEARNING RATES (GRADIENT VALUES) IN THE CASE OF THE FOUR

COMBINED MOTIONS FOR ALL THE SUBJECTS

user intentionally preferred a sequential approach to complete
the combined motion task. However, we observed a gradual
change, from a sequential decoding to a more simultaneous
decoding strategy, by the subjects as the trials progressed.
In order to verify the learning trend, we measured the gradient
of the line fitting the efficiency coefficient values during the
twenty repetitions in the case of combined movements for
each of the twelve subjects. A positive gradient value would
suggest that the subjects progressively learn to simultaneously
coordinate the movements, to efficiently reach the target during
the online testing. Table I indicates the gradient values for
each of the subjects and for the four combined motions;
positive values were obtained for majority of the motions,
indicating the presence of a learning effect. We did not perform
a familiarization phase because our work does not contemplate
any task which includes remapping of motor commands,
kinematics or haptics, but rather the subjects were requested
to replicate a motion task presented on a screen by a virtual
avatar.

IV. DISCUSSION

The online testing of the proposed decoding strategy
indicates good classification accuracy for both individual
and combined motions involving the hand and wrist DOFs.
Low-dimensional representation using the LDA plus opti-
mal rotation transformation algorithm provides the basis for
discriminating between individual and combined movements
in a two-dimensional representation. We believe, that our
approach is novel, and incorporates the strength of the LDA
technique to build an algorithm capable of decoding both
individual and simultaneous movements. As previously men-
tioned, the method proposed by Jiang et al. [16] for simultane-
ous motion decoding uses an NMF algorithm (unsupervised)
to perform dimensionality reduction; one drawback of their
approach is the need to determine a correction factor after
the calibration in order to account for any potential reversal
of direction due to the indeterminacy of the NMF algorithm.
Our proposed decoding model does not have any directional
indeterminacy due to fact that LDA is a supervised algorithm
where both the agonist and antagonistic movements in a DOF
are labeled. However, it is one of the first algorithms to
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TABLE II
EFFICIENCY COEFFICIENT COMPARISON

develop a strategy for decoding both individual and combined
motions, by recording data from the singular movement, which
is aligned with our proposed decoding strategy. While a
comparison between the two approaches in terms of accu-
racy of decoding is not possible at the moment, due to
the fact our proposed decoding strategy is built to perform
discrete classification of movements rather than a proportional
regression-based approach by the other group. However, we
have added a table (Table II) to make a generic comparison
of the efficiency coefficient metric in both the cases.

We notice better efficiency values while using our LDA
based approach (mean = 63.83%) compared to NMF based
approach (mean = 56.96%) by Jiang et al. [16], where both
strategies use a position control model for the movement of
the avatar or cursor. Though, the nature of the tasks is different
in both the cases, this comparison is only meant to provide a
coarse evaluation of our approach when compared to others.
However, our next step will be in extending the usage of the
decoding strategy to include proportional control, and hence
an evaluation of the performance differences would be more
appropriate. On the other hand, the approach by Young et al.
is based on a strategy that involves recording data from both
simple and multiple motions. However, the main aim of this
study is primarily to introduce and evaluate the efficacy of a
novel low-dimensional and computationally efficient decoding
strategy capable of simultaneous decoding, by recording only
the individual motions.

We notice that the efficiency coefficient values are higher
in the case of individual motions when compared to combined
motions. This reiterates the effectiveness of the IDE technique,
in ensuring unintentional prediction of a combined motion
when the user is intending to perform an individual motion.
Though, the efficiency is lower in the case of combined
motions, we do notice a gradual improvement towards an
efficient way of performing the task, as characterized by the
learning rates in the results section. Therefore, there is scope
for an efficient way of performing both the types of motions
using our approach.

Another aspect of our proposed decoding strategy is the
potential to incorporate a modular approach, whereby scalabil-
ity in terms of the number of DOFs can be achieved without
increasing the complexity. This means that any n-DOF task
(n > 2) could be split into smaller two-DOF task modules,
and the outputs are then combined to perform simultaneous
decoding. With a ’divide and conquer’ strategy, along with
the IDE technique to distinguish between individual and
combined movements, our algorithm could potentially aid in

increasing the number of DOFs, and this critical challenge will
be an important focus for future works. Together with low-
dimensionality of control and reduced computational cost, our
aim is to implement the control algorithm in an embedded
computing platform, to enable portability of the processing
unit and perform faster real-time control in applications such
as myoelectric-based prosthesis or exoskeletons.

One limitation of our proposed decoding strategy to be
considered for future experiments is the lack of proportional
control in movement position. However, the algorithm could
be extended to incorporate proportional myoelectric control
by evaluating the magnitude of the feature vector in the 2-
dimensional plane after the modified-LDA transformation. The
amplitude of the feature vector provides an estimation of the
effort exerted by the user, and normalization procedures can be
performed to ensure similar peak velocities across all classes.
An optimization algorithm could be built to further reduce
the calibration time especially for calculating the optimum
rotation matrix. A cost function could be used to implement
a gradient descent-based approach to arrive at the optimum
Euler-angle values, instead on calculating the cost for all
possible combinations of Euler-angles.

V. CONCLUSION

In this paper we presented a novel classification algorithm
capable of decoding both individual and combined movements
using a low-dimensional representation of the EMG signals
using LDA transformation. The performance of the decoder
was tested in the case of a two DOF motion task involv-
ing hand and wrist movements. The results indicate good
decoding accuracy for both individual and combined motions.
Incorporating an IDE technique based on MD measure has
helped improve the decoding accuracy and prevent inadvertent
activation of combined motions when individual motion is
intended. Extending the control to incorporate proportional
control as well as the capability to decode more than two DOFs
would be implemented in future experiments. The current
experimental setup consists of instrumentation which is not
realized for portability and is tested in a virtual environment;
the future goal would be to realize an embedded architecture
to control either a prosthesis or a wearable exoskeleton device.
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